Introduction

- Autonomous Underwater Vehicles (AUVs) open great possibilities to address some critical problems for dangerous operations at depths of sea, with available and cost-affordable technology.
- MDM Lab, the Laboratory of Mechatronics and Dynamic Modelling of the University of Florence, is partner of the Thesaurus project, funded by Regione Toscana, with the aim of designing a moderate-cost AUV, called Tifone, to be used, in swarm, for research and monitoring of archaeological sites.
- The absolute localization of a fleet of AUVs is a challenging problem due to the unavailability of Global Positioning System (GPS), [1,2].

Swarm configuration

- The system we refer to is composed of three underwater vehicles and a surface support ship.
- Each AUV is equipped with low-cost inertial sensors, a compass, a depth sensor and an acoustic modem.
- Only the master AUV has a high accuracy navigation sensor such as the Doppler Velocity Log (DVL).
- The surface boat locates itself through GPS.
- By the means of the acoustic modems, each vehicle can calculate its distance from the other vehicles of the fleet, while it receives data, with an update period considered around 10 s [1].
- The master AUV performs a geometric algorithm based on a tetrahedral configuration, Tetrahedron Based Position Estimator, with the aim to extend the advantages of the use of DVL to vehicles not equipped with it.
- Some strategies of propagation of the estimates have been implemented in the master AUV in order to limit the lack of information due to communication.
- The estimate of the orientation is implemented through a non linear attitude observer called Non linear Complementary Filter [3].

Tetrahedron Based Position Estimator

Through range measurements \((d_{ij})\) provided by acoustic modems, a geometric method based on a tetrahedral configuration allows a deterministic fix for position, avoiding unbounded error growth in the position estimate of each AUV.

\[
\begin{align*}
AUVs \text{ coordinates (A Frame):} \\
& z_1^i = d_{11} \\
& y_1^i = 0 \\
& x_1^i = \frac{d_{12} - d_{13} - d_{14}}{2d_{11}} \\
& \sqrt{y_1^2 + z_1^2} = \frac{d_{21}}{d_{11}} \\
& z_1^f = 0 \\
& x_1^f = \frac{d_{23} - d_{24} - d_{21}}{2d_{22}} \\
& \sqrt{y_1^2 + z_1^2} = \frac{d_{31}}{d_{22}} \\
\end{align*}
\]

\[
\begin{align*}
AUVs \text{ coordinates (Fixed-frame n):} \\
& R_1^n = \begin{bmatrix} z_1^n & y_1^n & x_1^n \end{bmatrix} \\
& R_2^n \text{ to be determined by means of depths:} \\
& R_3^n = \frac{R_1^n - R_2^n}{R_4^n} \\
& R_5^n = r_5 \\
& \text{And by means of AUV}_i \text{ (with DVL) estimated position:} \\
& \begin{bmatrix} x_i^n & y_i^n & z_i^n \end{bmatrix} = \begin{bmatrix} R_1^n & R_2^n & R_3^n \end{bmatrix} \\
& 5 \text{ elements are sufficient to calculate the whole } R_1^n \text{ matrix. Thus positions } P_1^n \text{ as the fixed frame can be determined.}
\end{align*}
\]

Simulations and Results

- A dynamical model of an AUV has been implemented, using Matlab-Simulink, with reference to [4].
- A sensor mask has been applied to each measurement to model error sources.
- The trajectories, chosen for the simulations, provide that the support ship remains stationary, whereas the three AUVs follow the paths shown in Figure 3.
- Statistical simulations based on 100-simulations-Monte Carlo method, in Figure 4, represent the evolution of RMS estimate error of position for the three AUVs as to the time.

Conclusions

- Preliminary results, based on Matlab-Simulink simulations, point out the advantages of using the strategy proposed.
- Further activities will be carried out to test the algorithm through realistic experiments.

Acknowledgments

The work reported in this paper was supported by the THESAURUS project. The THESAURUS project is funded by Regione Toscana, in the framework of the program PAR FAS REGIONE TOSCANA Linea di Azione 1.1a.3.

References

Fig. 1. CAD model of Tifone

Fig. 2. A Frame

\[
A \text{ frame:} \\
x^A \text{ axis so that AUV}_i \text{ belongs to it} \\
y^A \text{ axis so that AUV}_2 \text{ belongs to } x^A y^A \text{ plane } (y^A > 0) \\
z^A \text{ consequently}
\]

Fig. 3. Followed paths

Fig. 4. Time evolution of RMS estimate error